

It **understands**your everyday

Philips Affiniti 30 ultrasound system specifications

Contents

1	Introduction	3	4.11	Connectivity	13
1.1	Applications	3		Standard connectivity features	13
				NetLink connectivity option	14
2	System overview	4		Report	14
2.1	System architecture	4		Government security option	14
2.2	Imaging formats	5		SafeGuard security option	14
2.3	Imaging modes	5		Security Plus option	14
	M-mode	5			
	2D imaging	5	5	Transducers	15
	Tissue Harmonic Imaging (THI)	6	5.1	Transducer selection	15
	Color Doppler	6		Compact transducers	15
	Color Power Angio imaging (CPA)	6		Curved array	15
	Spectral Doppler	7		C6-2 broadband curved array	15
	Steerable continuous wave (CW) Doppler	7		C8-5 broadband curved array	15
	Tissue Doppler Imaging (TDI/TDI PW)	7		C9-4v broadband curved array	15
	3D/4D and MPR imaging (hybrid transducers)	7		Volume array	16
	Freehand 3D volume and MPR imaging	8		3D9-3v broadband curved array	16
	Spatio-Temporal Image Correlation			V6-2 broadband curved array	16
	(STIC) imaging	8		Linear array	16
	Panoramic imaging	8		L12-4 broadband linear array	16
	Interventional imaging	8		L12-5 50 broadband linear array	16
	Strain-based elastography	8		Sector array	16
	Strain Sassa clastography	O		S4-2 broadband sector array	16
3	System controls	9		S8-3 sector array	16
3.1	Optimization controls	9		Non-imaging	16
J.1	2D grayscale imaging	9		D2cwc CW transducer (Pedoff)	16
	Next-generation SonoCT real-time	9	5.2	Transducer application guide	17
	compound imaging	9	3.2	Transacter application galac	.,
	XRES adaptive image processing	9	6	Measurements and analysis	19
	Live volume imaging (GI/WHC)	9	6.1	Measurement tools and general description	19
	Tissue aberration correction (TAC)	10	6.2	Measurement tools and quantification	20
	iSCAN intelligent optimization	10	0.2	QLAB quantification software	20
	AutoSCAN intelligent optimization	10		General Imaging 3D Quantification	
	iOPTIMIZE intelligent optimization	10		(GI 3DQ) plug-in	20
3.2	Control panel	10		Intima Media Thickness (IMT)	20
3.3	Touchscreen	10		Quantification plug-in	20
5.5	Touchscreen	10		Elastography Quantification (EQ)	20
4	Workflow	11	6.3	High Q automatic Doppler analysis	21
4	Ergonomics	11	6.4	Clinical option analysis packages	21
4.1	_		0.4	elimeat option anatysis packages	- 1
4.2	Display annotation	11	7	Physical specifications	22
4.3	SmartExam protocols	11	,	System dimensions	22
4.4	aBiometry Assist ^{A.I.}	12		System cart	22
4.5	Stress echo	12		Monitor	23
4.6	Volume imaging solutions for	12		Control panel	23
47	connected radiology departments	12		Physio	23
4.7	QuickSAVE feature	12		Peripherals	23
4.8	Image presentation	12		·	23
4.9	Cineloop review	13		Input/output ports	23
4.10	Exam management features	13		Power requirements and video parameters	
	Rapid Procedure Setup	13		Electrical safety standards	23
			8	Maintenance and services	24
				Clinical education	24
				Philips Remote Connectivity	24
				Warranty	24

Introduction

You always go above and beyond to provide the best care to your patients. But you are expected to do so with less time, fewer resources, and higher patient volume. The care you want to provide deserves tools that can set you ahead and help you stay ahead.

We designed Philips Affiniti 30 to give you the confident results you need, in the time you have. Engineered for efficiency and reliability and powered by Philips superb performance, it gets you diagnostic images you need, quickly – even on the most technically difficult patients. Its intuitive design and walk-up usability help you provide elegant, efficient care – every day.

1.1 Applications

- Abdominal
- Obstetrical
- · Fetal echo
- Cerebrovascular
- Vascular (peripheral, cerebrovascular, temporal TCD, and abdominal)
- · Abdominal vascular
- · Gynecological and fertility
- · Small parts and superficial
- Musculoskeletal
- · Pediatric general imaging
- Prostate
- Echocardiography (adult, pediatric, fetal)
- Stress echocardiography
- · Interventional imaging
- · Bowel imaging
- · Strain elastography

2. System overview

2.1 System architecture

- · Supports strain elastography
- Offers up to 4,718,592 total digital channels
 - Next-generation ultra-low noise, wide dynamic range, 280 dB, digital broadband acoustic beamforming with proprietary architecture
 - Powerful distributed multi-core processing architecture capable of achieving 225 x 109 40-bit Multiply-Accumulates/second. Includes 512 GB hard drive support for transducer frequencies up to 20 MHz
 - Optimized for high definition 54.6 cm (21.5 in)
 LCD display
- Designed to support virtually any array configuration: sector, linear, curved, tightly curved
- Supports depths from skin line (using zoom function) to 40 cm

- High precision beam-steered image compounding that acquires more tissue information and reduces anglegenerated artifacts
- Up to nine lines of sight, obtained by steering the ultrasound beam, available on linear, curved and tightly curved arrays, and mechanical volume arrays
- WideSCAN capability to expand field of view during SonoCT imaging
- Performs 350 million calculations per frame of image data up to 1900 frames per second
- Operates in 2D and 2D/CFI/Doppler/TDI mixed modes up to 1900 frames per second
- Doppler bandwidth that automatically adjusts for outstanding flow sensitivity and resolution
- · Stress protocols with up to ten stages

- · Forty views per stage by five modes
 - Multi-application SmartExam workflow protocols
- Stress echo, echo, abdominal, small parts, Ob/Gyn, and vascular applications
- · Step-by-step on-screen guidance during exam
- · Full user customization
- Record function for creation of custom protocols
- · Automatic mode switching including 3D
 - Fast system boot up: from off, approximately 110 seconds

2.2 Imaging formats

- · 2D linear: WideSCAN with SonoCT
- 2D curved: WideSCAN with SonoCT
- · 2D sector
- · 2D virtual apex sector imaging with wide field of view
- · 2D trapezoid
- Dual 2D
- Panoramic

2.3 Imaging modes

- 2D grayscale imaging with advanced pulse coding, pulse shaping, and frequency compounding technologies
- · M-mode
- M-mode color Doppler
- M-mode tissue Doppler
- · Anatomical M-mode
- · TDI M-mode
- · 3D imaging
- \cdot 3D imaging with Color Doppler/CPA/DCPA
- · 4D imaging
- Tissue Harmonic Imaging (THI) with pulse inversion technology
- Multivariate Tissue Harmonic Imaging including pulse inversion technology
- · SonoCT beam-steered real-time compound imaging
- $\cdot \ \mathsf{Harmonic} \ \mathsf{SonoCT} \ \mathsf{imaging}$
- Up to five levels of XRES adaptive image processing technology
- Variable settings available to the user
- iSCAN intelligent scanning for one-button TGC and gain optimization (i.e., adaptive gain compensation AGC)
- AutoSCAN with adaptive gain compensation (AGC) for real-time frame-by-frame TGC optimization
- Simultaneous 2D M-mode
- · Color Doppler
- · Color Power Angio imaging (CPA) and directional CPA
 - High resolution option available in relevant clinical applications
- Strain-based elastography
- · High-PRF pulsed wave (PW) Doppler
- Duplex and simultaneous 2D/PW Doppler
- · Duplex continuous wave (CW) Doppler

- · Duplex, color flow, CW Doppler
- · Duplex 2D, color flow, PW Doppler
- · Duplex 2D, CPA, PW Doppler
- Tissue Doppler Imaging (TDI)
- · Adaptive Doppler
- · Adaptive Broadband Color Flow
- Color compare mode
- Independent triplex mode for simultaneous 2D, color flow, PW Doppler
- Independent triplex mode for simultaneous 2D, CPA, PW Doppler
- · Dual imaging with:
 - Two work flow choices; single buffer or dual buffer
 - Mixed mode display with one image live while other is frozen, for example, 2D/2D, 2D/color, color/color, color/CPA
- · High definition zoom with pan (write zoom)
- Reconstructed zoom with pan (read zoom)
- · Panoramic imaging
- SonoCT panoramic imaging with XRES and harmonic modes
- Chroma imaging in 2D, 3D, QLAB MPR and iSlice, Panoramic, M-mode, and Doppler modes
- Dynamic colorization in freehand 3D on C9-4v, and 3D/4D on V6-2 and 3D9-3v
- Spatio-Temporal Image Correlation (STIC)

M-mode

- · Available on all imaging transducers
- Anatomic M-mode available on all imaging transducers
- TDI M-mode available in cardiac applications
- · Selectable sweeping rates
- Time markers: 0.1 and 0.2 seconds
- · Acquisition zoom capability
- Selectable display format prospective or retrospective (1/3-2/3, 1/2-1/2, 2/3-1/3, side-by-side, full screen)
- Chroma colorization with multiple color maps
- Cineloop review for retrospective analysis of M-mode data 256 (8 bits) discrete gray levels

2D imaging

- · Available with all imaging transducers
- · Adjustable sector width and position during live imaging
- Ability to invert image left and right, top and bottom
- · Receive gain
- LGC (lateral gain compensation) on cardiac sector transducers
- \cdot Selection between one and eight focal zones
- Dynamic range or echo compression, transducer and Tissue Specific Presets (TSP)-dependent
- · Gray map
- · Chroma imaging providing colorized luminance maps
- Acquisition zoom (HD zoom): ability to position the zoom ROI anywhere within the image, and change the height and width of the zoom ROI

- Display zoom and magnify on live or frozen images up to 16 times
- Three levels of frame rate
- Support of frame rates of up to 1900 frames per second
- Tissue optimization
- · Contrast resolution enhancement
- · Tissue Harmonic Imaging
- · SonoCT imaging
- Post-processing includes gain, dynamic range, up/down invert, right/left invert, zoom, gray map, and Chroma map
- Live Compare imaging; side-by-side comparison of 2D images where the current live image is compared to a stored image from the same study
- · WideSCAN imaging
- · Next-generation XRES technology
- Persistence (frame averaging)
- · Grayscale standard display
- AutoSCAN with adaptive gain compensation (AGC) for real-time line-by-line TGC optimization

Tissue Harmonic Imaging (THI)

- Provides second harmonic processing to reduce artifacts and provides high quality images
- Multivariate pulsing including patented pulse inversion phase cancellation technology for increased detail resolution during harmonic imaging
- · Available in all clinical applications
- Extends high performance imaging capabilities to all patient body types
- Support of SonoCT (Harmonic SonoCT) and XRES modes

Color Doppler

- · Available on all imaging transducers
- · Color gain
- Region of Interest (ROI)
- Freq Opt: fixed transmit/receive frequencies including adaptive flow
- Seventeen selectable baseline positions for CV, nine selectable baseline positions for GI, WHC
- Baseline invert
- · B/W suppress
- · Color blending
- · Color compare dual display (B/W on left, color on right)
- Color map
- Color persistence
- Flow optimization: GI, WHC
- Output power
- Magnify (range from 0.8X to 8X)
- Scale sector width and position on curved and phased array transducers
- Simultaneous mode during PW mode
- Smoothing
- Variance

- · Wall filter
- Write priority
- Zoom
- · Cineloop review with full playback control
- Advanced motion suppression with intelligent algorithms; adapts to various application types to selectively reduce color motion artifacts
- · 256 color bins
- Post-processing includes baseline, color invert, color map, hide color, write priority, blend, variance, and zoom
- Parallelogram steering on linear array transducers;
 three angles on L12-5 50 and thirty-one angles on L12-4
- Trackball-controlled color Region of Interest: size and position
- Maps, filters, color sensitivity, line density, smoothing, echo write priority, color persistence, gain, and baseline optimized automatically by exam type or is user-selectable
- Velocity and variance displays
- · Color invert in live and frozen imaging
- Frequency optimization control for spatial resolution and penetration optimization
- Color and 2D line density control
- Automatically adapts transmit and receive bandwidth processing based on the color box position, providing exceptional sensitivity and color resolution
- Color Doppler PRF maximum 34 KHz, dependent on transducer and clinical application

Color Power Angio imaging (CPA)

- Automatically adapts transmit and receive bandwidth processing based on the color box position providing excellent sensitivity and color resolution
- Highly sensitive mode for small vessel visualization
- Available on all imaging transducers for general imaging and women's healthcare
- · Cineloop review
- Multiple color maps
- Individual controls for gain, filters, sensitivity, echo write priority, and color invert
- ${\boldsymbol \cdot}$ Adjustable CPA Region of Interest: size and position
- User-selectable persistence
- $\cdot \ \mathsf{User}\text{-}\mathsf{selectable} \ \mathsf{blending} \ \mathsf{on/off}$
- Cineloop review with full playback control
- Advanced motion suppression with intelligent algorithms; adapts to various application types to selectively eliminate virtually all color motion artifacts
- 256 color bins
- Post-processing includes hide CPA, write priority, invert, DCPA map, blend, and zoom
- Parallelogram steering on linear array transducers;
 three angles on L12-5 50 and thirty-one angles on L12-4
- Trackball-controlled color Region of Interest: size and position

- Maps, filters, color sensitivity, line density, smoothing, echo write priority, color persistence, gain, and baseline optimized automatically by exam type or is user-selectable
- · Velocity and variance displays
- · Color invert in live and frozen imaging
- Frequency optimization control for spatial resolution and penetration optimization
- Color and 2D line density control
- Automatically adapts transmit and receive bandwidth processing based on the color box position, providing optimal sensitivity and color resolution
- CPA PRF maximum 34 KHz, dependent on transducer and clinical application

Spectral Doppler

- Display annotations including Doppler mode, scale (cm/sec) Nyquist limit, wall filter setting, gain, acoustic output status, sample volume size, normal/inverted, angle correction, grayscale curve
- · Ultra-high resolution millisecond spectral FFT rate
- · Angle correction with automatic velocity scale adjustment
- · Adjustable velocity display ranges
- Nine position shifts (including 0)
- · Normal/invert display around horizontal zero line
- Five selectable sweep speeds: Min, Slow, Medium, Fast, and Max
- Selectable low-frequency signal filtering with adjustable wall filter settings
- · Selectable grayscale curve for optimal display
- · Selectable Chroma colorization maps
- Selectable display format prospective or retrospective 1/3-2/3, 1/2-1/2, 2/3-1/3, side-by-side, full screen
- Steering available to up to 90° (+/- 45°), dependent on transducer and clinical application
- Doppler review for retrospective analysis of Doppler data
- 256 (8 bits) discrete gray levels
- Post-processing includes invert, baseline, angle correct, Quick angle, display format, sweep speed, reject, compress, Chroma map
- · Available on all imaging transducers
- Adjustable sample volume size: 1.0-20 mm (transducer-dependent)
- · Simultaneous or duplex mode of operation
- · Simultaneous 2D, color Doppler, pulsed Doppler
- High-PRF capability in all modes including duplex, simultaneous duplex, and triplex
- PRF range between 200 Hz-34 KHz, depending on transducer and clinical application
- 50 dB or more gain available to the user, depending on clinical application
- iSCAN optimization that automatically adjusts scale and baseline

Steerable continuous wave (CW) Doppler

- Available on all cardiac applications using sector transducers
- Steerable through 90° sector
- Maximum velocity range: 19 m/sec (transducer-dependent)
- iSCAN optimization that automatically adjusts scale and baseline

Tissue Doppler Imaging (TDI/TDI PW)

- Available on all cardiac imaging transducers
- Frame rate control: high frame rate acquisition of tissue motion (up to 240 fps)
- $\boldsymbol{\cdot}$ TDI gain, TGC, and LGC compatible
- TDI Opt: optimized transmit and receive frequencies
- Eight maps
- TDI M-mode and TDI-PW available, dependent on transducer and clinical application

3D/4D and MPR imaging (hybrid transducers)

- Volume display with surface rendering (transparency, brightness, and lighting controls)
- · Multiplanar reconstruction (MPR) view display
- Specialized algorithms and maps increase three-dimensional display
- Cropping tools on both volume and multiplanar reconstruction (MPR) views
- · Slice control on MPR and volume displays
- Supported by SonoCT and XRES modes to reduce noise artifacts
- Tilt feature offered on the 3D9-3v provides incremental lateral steering of the 2D image plane to the right or left

Freehand 3D volume and MPR imaging

- Qualitative grayscale volume acquisition supported on all imaging transducers
- Volume display with surface rendering (transparency, brightness, and lighting controls)
- Multiplanar view display
- · Specialized algorithms and maps increase 3D display
- Trim tools on both volume and multiplanar reconstructed (MPR) views
- Supported by SonoCT and XRES modes to help reduce noise artifacts
- Resize control that adjusts for different sweep speeds
- · On-screen orientation markers

Spatio-Temporal Image Correlation (STIC) imaging

- Available on V6-2 transducer
- Automated volume acquisition of fetal cardiac cycle allowed
- · Grayscale and 3D Color
- · CPA and Directional CPA (DCPA)
- · Default 25° elevation angle
- · User-configurable acquisition time
- · Ability to stop acquisition and return to standby
- · Ability to accept or reject detected heart rate
- · Compatible with QLAB quantification software

Panoramic imaging

- Real-time extended field-of-view composite imaging, acquired in fundamental or SonoCT mode
- \cdot Ability to acquire composite image in XRES mode
- · Ability to back up and realign the image during acquisition
- Full zoom, pan, cineloop review, and image rotation capabilities
- · Auto fit of composite image
- Distance, curved-linear distance, and area in review mode can be measured with distance marker displayed via skin-line ruler
- Ability to display or remove skin-line ruler
- Cineloop review that allows measurement on individual frames
- Scaling information included for connectivity prints allowing for measurements on a workstation
- Available on linear and curved array transducers (not available on endovaginal transducers)

Interventional imaging

- TSP available on selected transducers for excellent performance during interventional and biopsy procedures
- · Biopsy guide selection menus
- · Interventional modes
- Support of multiple biopsy angles on S4-2, C6-2, V6-2, and L12-4

Strain-based elastography

- Strain-based elastography for breast and gynecological imaging
- Available for breast imaging on the L12-5 50 transducer, and on the C9-4v for gynecological and pelvic imaging
- · One-touch entry into elastography mode
- Elastogram applied as a Region of Interest box with user control of size and location through entire field of view
- Indicator for compression level
- · Display options
- Single-screen 2D with elastogram
- Side-by-side display of 2D image and 2D with elastogram
- Shadow duplication (size compare) capability in side-by-side display
- · Distance and area tools
- Duplication from either side of the display
- Eight selectable elastogram display maps
- · Ability to hide or show the elastogram display
- Blend capability to increase 2D visibility through elastogram display
- Four smoothing selections
- Five persistence selections
- Two dynamic resolution system (DRS) selections to alternate between elastogram resolution and penetration
- · Four dynamic range selections for elastogram display
- Two elastogram optimization settings for different tissue compositions
- AI anechoic imaging for enhancing areas without ultrasound signals such as cystic and complex cystic structures
- $\bullet \ Stiffness \ measurement \ available$

3. System controls

Philips common user experience provides readily accessible and logically grouped primary controls along with an easy-to-learn graphical user interface.

3.1 Optimization controls

2D grayscale imaging

- Smart TGC: pre-defined TGC curves optimized for consistently excellent imaging with minimal TGC adjustment
- Lateral gain compensation (LGC) and Smart LGC for cardiac sector transducers
- Adjustable temporal resolution and spatial resolution with DRS control
- Depth: adjustment from 2.0 to 40 cm depending on transducer and exam
- · Selection between one and eight transmit focal zones
- · 16-level digital reconstructed zoom with pan capability
- High definition zoom that concentrates all image processing power into a user-defined area of interest; possible to combine high definition zoom with pan zoom
- · Cineloop image review
- · Selectable 2D compression settings
- · Tissue aberration correction
- Sector size and steering control for sector and curved array image formats
- · Selectable 2D line density with DRS control
- Dual imaging with either independent cineloop buffers or split-screen imaging
- Dual imaging with color compare
- · Dual imaging with fundamental optimization
- · Chroma imaging with multiple color maps
- · 256 (8 bits) discrete gray levels
- 2D acquisition frame rate up to 1900 frames/sec (dependent on field of view, depth, and angle)

Next-generation SonoCT real-time compound imaging

- · Available on all transducers except sector
- · Reduced clutter and artifacts
- Automatic selection of the number of steering angles based on the user-selected resolution/frame rate (Res/Speed) condition
- Up to nine lines of sight automatically adjusted via DRS control
- Operates in conjunction with Tissue Harmonic Imaging, volume modes, panoramic imaging, and duplex Doppler
- Operates in conjunction with XRES
- Available with WideSCAN format during 2D imaging for extended field-of-view operation

XRES adaptive image processing

- Available on all imaging transducers
- · Reduces speckle noise and enhances border definition
- Available in all imaging modes including color flow and Doppler
- · Operates in conjunction with SonoCT imaging

- Provides high resolution algorithms for advanced speckle noise reduction, refined tissue pattern displays, and fine border definition
- Provides high speed processing that allows up to 1900-frames-per-second displays
- Five different levels available, dependent on transducer and clinical application

Live volume imaging (GI/WHC)

- · Single sweep 3D, 4D, STIC
- · 3D preview ROI size and position
- · 3D preview ROI curve adjust
- · Sector width
- Angle
- · Res/speed control
- · Grayscale imaging controls
- · 2D optimization settings
- 2D color optimization settings
- 2D power optimization settings
- Tissue Harmonic Imaging
- · Rotate X, Y, Z
- Slice
- · ROI size and position
- ROI curve adjust
- · Pointer trim adjust
- · Pointer xHair move
- · Pointer cine
- · Edit/accept
- · Hide volume
- · Up/down invert
- QuickFlip
- 3D rotate: 0°, 180°, 90°, 270°
- 3D view control: up, down, left, right, front, back
- · Reset orientation
- Tilt feature on 3D9-3v transducer
- Magnify
- 3D vision control
- · Dynamic volume colorization
- · Chroma colorization
- Layout
- Reference
- XRES technology
- · Zoom
- · Show/hide echo or color
- · Reset controls
- Pan
- Sculpt
- Threshold
- Brightness
- Smoothing

- Lighting
- Transparency
- xHair display
- Save volume in native or native loop
- · Acquisition sweep save
- MPR sweep save
- Generic distance and area measurements available on rendered volumes
- · Distance and area measurements on MPRs
- QLAB plugins, including GI 3DQ

Tissue aberration correction (TAC)

- Automatically enabled when ABD maximum penetration TSP is selected on C6-2 transducer
 - Corrects for speed of sound disturbances due to excessive adipose layer on obese patients
- User selections with the L12-5 50 for breast and MSK TSPs
 - Corrects for speed of sound disturbances in fatty tissue

iSCAN intelligent optimization

- · One-touch image optimization
 - In 2D mode, one-button automatic adjustment of system gain and TGC to achieve balanced brightness of tissues
- In Doppler mode, one-button automatic adjustment of:
- Doppler PRF based on detected velocity
- Doppler baseline based on detected flow direction
- · Available on all imaging transducers
- Operates in conjunction with SonoCT and XRES imaging
- · AutoSCAN continuous automatic optimization
- Adaptive gain compensation (AGC) dynamically adjusts (every pixel on every scan line) low level 2D echoes to reduce gain artifacts (shadows/through transmission) and enhance image uniformity with 2D and 3D imaging

AutoSCAN intelligent optimization

- Continuous, real-time adjustment of system gain and TGC to achieve balanced brightness of tissues
 - When activated, applies gain balancing to all grayscale image data including 2D, 3D, and M-mode grayscale data
- Every image frame has individually adjusted image brightness
- Available from 2D touchscreen controls

iOPTIMIZE intelligent optimization

Multiple technologies for one-button approach to automatically and immediately adjust system performance for different patient sizes, flow states, and clinical requirements.

- Tissue Specific Presets adjusts over 7,500 parameters during transducer/application selection
- Patient optimization adjusts 2D performance to immediately adapt to different patient sizes

- Flow optimization adjusts broadband flow performance to immediately adapt to different flow states
- Dynamic resolution system (DRS) one control adjusts nearly 40 parameters simultaneously for user preference of spatial resolution or temporal resolution during clinical procedures
- · One control optimizes functions such as:
- Line density
- Persistence
- Pulse inversion harmonics
- Synthetic aperture
- Number of lines of sight (SonoCT)
- RF interpolation
- Parallel beamforming

3.2 Control panel

- Easy-to-learn graphical user interface with reduced number of hard controls
- Primary controls concentrated in cluster around trackball
- Tri-state control panel lighting (active, available, and unavailable)
- Ambient lighting control for exceptional image viewing in both light and dark environments
- Full-color 12-inch capacitive touchscreen, complete with swipe technology, enables easy navigation of controls and system interaction
- Dual function mode switch and independent gain controls for 2D, CPA, M-mode, Color, PW, CW Doppler, TDI, and 3D
- · Eight-slide pot control adjustment of TGC curve
- iSCAN control for 2D/Doppler automatic optimization
- · High definition/pan zoom control
- Dual mode control
- Freeze control
- Three programmable acquire controls

3.3 Touchscreen

- Widescreen touchscreen for dynamic presentation of controls
- Workflow-related controls (Patient, Review, Report, End Exam, Help) always present on touchscreen
- $\boldsymbol{\cdot}$ Direct selection of any attached transducer
- Automatic or manual selection of Tissue Specific Presets parameters
- Tabbed layout and swipe capability for quick access to hidden controls
- Touchscreen control adjustment of LGC and TGC curve with simultaneous display of image on touchscreen to enhance ergonomics and reduce user steps
- Touchscreen alphanumeric keyboard for text entry

4. Workflow

The Affiniti 30 ultrasound system features innovative Philips technologies that combine for outstanding performance and efficient workflow.

4.1 Ergonomics

- Advanced control panel design with fewer, clustered controls and easily accessed mode keys to reduce reach
- Tri-state lighting that provides immediate feedback of active, available, and unavailable controls
- Widescreen touchscreen allows more controls to be available at a time
- Touchscreen controls are grouped for quick recognition
- Many touchscreen controls can also be accessed from the main display, allowing user to maintain consistent visual focus
- Independent adjustment of height and rotation of monitor and control panel allowing enhanced user posture, increasing comfort during exams (meets industry standards recommendation for the prevention of WRMSD)
- Highly mobile cart that facilitates portable exams and positioning in confined space environments

4.2 Display annotation

- On-screen annotation of all pertinent imaging parameters for complete documentation, including transducer type and frequency, active clinical options and optimized presets, display depth, TGC curve, grayscale, color map, frame rate, compression map value, color gain, color image mode, hospital name, and patient demographic data
- User-selectable display of patient birth date, patient gender, institution name, system name, and user
- · Fixed position title area for consistent annotation
- Patient name, ID, birth date, gender, and system date
- that can be turned off (hidden) for generating still images for publication
- · Additional patient information can be displayed on demand
- Sector steering icon for endocavitary transducers
- · Scan plane orientation marker
- · User-selectable depth scale display
- Real-time display of mechanical index (MI)
- · Real-time display of thermal index (TIb, TIc, TIs)
- Multiple trackball-driven annotation arrows
- Pre-defined annotations and body markers (applicationspecific and user-selectable), with two body markers supported in dual imaging format
- · Doppler baseline invert in live and frozen imaging
- · Compression changes available live or scrolling loop
- TGC curve (On/Auto/Off display)
- TGC values (On/Off display)
- Tool Tips provides a brief description of the abbreviated on-screen image parameters
- Trackball icon displaying functions assigned to trackball buttons
- · Informative trackball arbitration prompts

- · Thumbnail display of images printed/stored
- · On-screen selection and display of calculations
- · On-screen selection and editing of protocols
- · Calculations results and analysis labels
- · Graphical tabs that allow navigation to other analysis features
- Network and connectivity icons to allow immediate feedback about network and printer conditions
- Icons to display status of and/or allow access to the following functions: Print Job status, media read/write status, wireless connectivity, remote service, microphone, HIPAA status indicator icon, iScan status, acquisition status, physio status
- · Cineloop frame number display
- · Cineloop bar with trim markers
- · Prompt region for display of informational text and icons
- Trackball icon displaying functions assigned to trackball buttons
- · Contrast specification
- · Protocol procedure list with status

4.3 SmartExam protocols

- $\boldsymbol{\cdot}$ On-screen selection and editing of protocols
- · Exam guide with on-screen display
- \cdot Required views based on exam type
- · SmartExam customization
 - Creates a protocol as the user performs an exam
 - Saves all annotation, body markers, and labeled measurements defined in each view
- Records modes used to capture each view
- Captures the acquisition method (print, capture, 3D data set) in each individual view
- Provides user ability to pause and resume recording process if needed
- Allows user to edit views before finalizing the new protocol
- Fully customizable protocol capability for any clinical application supported on the system with flexibility to conduct the examination protocol in any sequence
- Preset protocols including but not limited to abdominal, vascular, cardiac, and Ob/Gyn exams based on industry and accreditation guidelines
- Automatic launching of annotation and body marker icon on required views
- Ability to automatically launch modes (2D, 3D, color modes, Doppler, dual, color compare) defined in a SmartExam
- Ability to pause and resume SmartExam function at any time
- System analysis capabilities supported in all defined protocols

4.4 aBiometry Assist^{A.I.}

 aBiometry Assist^{A.I.} utilizes anatomical intelligence technology for automatic measurements of the most commonly used fetal biometry parameters BPD, OFD, HC, AC, and FL

4.5 Stress echo

- Acquisition of echocardiography single frame or loops of the left ventricle in any imaging mode including 2D, color, and spectral Doppler
- Gain Save that adjusts automatically to different views and automatically saves your preferred control settings, such as gain, depth, ROI, position, and many other parameters:
- For each view while acquiring resting images
- At immediate post-exercise, automatic retrieval of saved settings for each view
- Different gain profiles for parasternal LAX and SAX views, AP4, and AP2 views allowed
- Length of acquired images that is user-adjustable between 1 and 180 seconds
- Ability to acquire routine cardiac images in timed and R-R interval clip (varies with selected compression ratio and available system memory)
- For timed acquisition, the ability to start acquisition on the R-wave if the ECG is active and an R-wave is present
- Your preferred control settings automatically saved such as MI (mechanical index), gain and depth for each view while acquiring resting images
- · Live Compare
- \cdot Ability to defer selection by stage
- · Default stress protocols
 - Factory-provided non-editable default protocols include:
 - Two-stage exercise stress
 - Four-stage pharmacological stress
 - Three-stage exercise stress (bicycle)
- Default protocols that may be used as the basis for user-defined versions
 - Support between 1 and 10 stages
 - Support user-defined stage names
 - Support between 1 and 40 views per stage
 - Support user-defined view names
 - Prompt for a particular stage and view
 - Assign stage and view names
 - Set clip length for each image or group of images
 - Set the number of cycles/beats for each image
 - Define prospective, retrospective, or multi-cycle/ full disclosure acquisition
 - Define the capture format of each image or group of images
 - Define the default replay mode for each protocol
 - Set mode acquisition for each view

- Support for up to five modes
- Save user-defined protocols within a preset
- Save user-defined protocols to removable media for import onto separate systems at the same software level
- Modify protocols during use
- Add stages at any point after the current stage

4.6 Volume imaging solutions for connected radiology departments

- · Customizable to your workflow
- Fast, one-button press volume acquisition and on-cart review
- Advanced volume and MPR visualization with QLAB GI 3DQ
 iSlice and thick slice on cart
- Capability to export freehand, electronic, and hybrid acquired 3D grayscale data for visualization on most PACS in a stacked "fly-through" manner (like CT/MR)
- Powerful 3D manipulation tools including volume rendering, MPR, MIP, slab viewing (thick slice),
 3D orientation graphics
- Advanced 3D visualization with QLAB GI 3DQ including ability to handle 3D color flow
- Orientation labels feature for spatial orientation of 3D data sets
 - Adult orientation labels for non-fetal applications
 - Fetal orientation labels for fetal applications
- MPR export capability
 - Ability to export A, B, and C planes as a multiframe loop for review on a DICOM device
 - Available on all transducers, but not supported for any STIC files

4.7 QuickSAVE feature

- The system provides the ability to quickly save preferred system settings as individual exam types
- · Over 40 QuickSAVE exams can be created per transducer
- Saved parameters include virtually all imaging parameters as well as color box size
- QuickSAVE exams can be copied to USB/DVD and transferred to other systems of like configuration

4.8 Image presentation

- · Up/down
- · Left/right
- Multiple duplex image formats (1/3-2/3, 1/2-1/2, 2/3-1/3, 50/50 and full screen)
- · Depth from 1 cm to 40 cm (transducer-dependent)

4.9 Cineloop review

- Acquisition, storage in local memory, and display in real-time and duplex modes of up to 2,200 frames of 2D and color images, up to 64 seconds of Doppler data and M-mode for retrospective review and image selection, or up to 48 seconds CW for retrospective review and image selection
- Prospective or retrospective loop acquire "accept" prior to store or clip store
- · Trackball control of image selection
- · Variable playback speed
- Trim capability of 2D data
- · Available in all imaging modes plus:
- Panoramic imaging
- 3D imaging
- Independent control of 2D image or spectral data in duplex mode
- Simultaneous control of 2D and spectral data in simultaneous mode
- · On-screen display of current 2D frame number
- Many controls available in cineloop review for post-processing such as 2D gain, dynamic range/ compress, XRES, magnify zoom

4.10 Exam management features

- · Internal storage
- · Data export
- · Temporary ID feature
 - One-click start of exam from patient data entry screen with system-provided information
 - Storage of images that were created without a patient name with a temporary identification
 - Patient identification via bar code reader

Rapid Procedure Setup

- With a single selection, choose transducer, preset, study type, study description, and optionally gender
- Procedure definitions are built-in for built-in study types
- · Additional procedure definitions may be added by the user
- Procedure may be automatically selected based on modality Worklist scheduled procedure information

4.11 Connectivity

Standard connectivity features

- Digital image acquisition and on-board patient exam storage
- Direct digital storage of B/W and color loops to internal hard disk drives
- Combined 512 GB storage capacity
- Storage capacity of approximately 350 patient exams (assuming 40 images, 6 seconds of clips and reports per exam)

- Fully integrated user interface
- User-configurable "auto delete" capability
- On-screen recall, measurement, and text editing
- Exam directory
- Append exam
 - To existing study
 - To new study using existing patient information
- · Data types
 - 2D, M-mode, Doppler spectral frame acquisition
 - 2D clip acquisition up to 2,200 frames per clip
 - Scrolling M-mode, Doppler acquisition
 - Cartisian volume acquisition: 3D, 4D, STIC
- MPR views
- Q-Apps frames and clips
- Printing
- Printing of images in configurable N-up format to local plain paper printers
- Page report print
- DICOM grayscale or color print
- · Media storage and retrieval
- Export DICOM Image and structured report export to removable media
- Export PC format image export to removable media
- Export PDF report to removable media
- Supported media
 - Read and write (single session) to CD (CD+R)
 - DVD read-only (DVD+R)
 - DVD read + write (single session) (DVD+RW)
 - USB storage (flash memory or hard drives)
 - Export PC format images and loops to network share
 - Export PDF report to network share
- DICOM image import
 - Ultrasound images
- OB trending data
 - Export OB trending information via USB storage device
 - Import OB trending information via USB storage device
 - Export and import of trending data is compatible with iU22
- RS-232 serial storage
 - Export of report data to off-line analysis computer programs
- Basic networking connectivity
 - Wired gigabit Ethernet
 - Wireless networking 802.11n
 - WPA2 Personal security
 - WPA2 Enterprise security
 - Network addressing
 - IPV4 addressing: static or DHCP for system address, static or host names (DNS lookup) for server addresses
 - IPV6 addressing: link local, router discovery, or DHCP for system address, host names for server addresses

- Compatibility with OmniSphere's data analytics and connectivity tools (applications sold separately)
 - Scheduled export of log files for use with the Utilization Optimizer application
 - On-cart service request for use with the Remote Technical Connect applications
 - In-house technical support tool via the Remote Technical Connect applications

NetLink connectivity option

- Supported DICOM services
 - Image storage
 - Structured Report (SR) storage includes Ob/Gyn, vascular, adult echo, pediatric echo, fetal echo, and congenital cardiology
 - Modality Worklist with automatic patient demographic entry
 - Modality Performed Procedure Step (MPPS)
 - Storage commitment push model
 - Query/retrieve of ultrasound images (study-root)
- Image and structured report export to network storage servers
- Send images after each Print/Acquire
- Send images at End of Exam (batch send)
- Send images and report on-demand during exam
- Send images or exams manually
- Send to up to 5 storage SCP's concurrently (at End Exam or after each Print/Acquire)
- Independently configurable destinations for each acquisition control (e.g., Acquire1, Acquire2, Save 3D, etc.)
- DICOM compression options
 - Uncompressed (Explicit VR Little Endian, Implicit VR Little Endian)
 - JPEG lossy compression (loops) with configurable quality factor 60-100
 - RLE lossless compression
 - JPEG lossless compression (frames)
- Other DICOM export options
- Monochrome or true color
- Configurable image size/loop export 640 x 480 or 800 x 600 or 1,024 x 768
- Secure DICOM configurable
- Grayscale mapping choices
 - DICOM Grayscale Standard Display Function (GSDF)
 - 25 additional grayscale curves, user-selectable
- Export optimization tool to aid user in evaluating PACS display monitor calibration and in selecting which grayscale curve to use for exported images
- Native data attached to DICOM ultrasound images (lossless compressed)
 - 2D native data types: tissue, flow, tissue Doppler, spectral Doppler, M-mode, and elastography
 - 3D volume data including crop, resize, gain, compression, colorize, color suppress, B/W suppress, XRES, and 3D quantification

- Ultrasound region calibration (standard for ultrasound images)
- Pixel spacing attribute for measurement calibration (optional)
- De-identification feature
- Send images to PACS and media without identifying information burned in to the image
- Images exported to media may optionally have patient information removed from DICOM attributes or PC format names
- All pages sent to DICOM printer have patient identification overlay – not configurable
- All pages sent to local printers are configurable to include or exclude patient identification overlay
- DICOM mapping for user-defined measurements, calculations, and OB authors
- Support of the export of user-defined measurements, calculations, and OB authors with standard DICOM structure reporting for:
- Adult echo
- Pediatric echo
- Fetal echo
- Ob/Gyn
- Vascular
- TCD
- Abdominal
- Small parts

Report

- · Report templates per clinical exam
- User-configurable report
- · Off-cart report configuration tool available
- On-cart report configuration

Government security option

Configurable option to provide up-to-date security features while fully hardening the system for patient data protection. Option also fully removes the capability for creating or configuring any VPN functionality.

- Antivirus protection
- · Malware protection
- In-memory protection
- USB/DVD protection
- Internet firewall protection
- OS security
- · Custom-configurable password

SafeGuard security option

Configurable option for enabling state-of-the-art computer protection against virus or malware for maximum network protection

- · Antivirus protection
- · Malware protection

Security Plus option

- Hard drive encryption
- · LDAP user authentication
- Custom-configurable password policies

5. Transducers

5.1 Transducer selection

- Electronic switching of transducers using four universal connectors
- Dedicated (Pedoff) continuous wave Doppler connector is available
- Automatic parameter optimization of each transducer for exam type through Tissue Specific Presets (TSP) software
- If two transducers are connected that both support the same TSP, the system supports instantaneous switching between transducers while maintaining current depth parameter if possible
- User-customizable imaging presets for each transducer
- Automatic dynamic receive focal optimization
- Transmission of focal characteristics automatically controlled through TSP, focal control, and DRS functions

Compact transducers

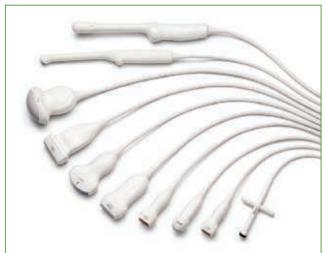
- Ergonomic designs with lightweight super-flexible cables
- · Virtually pinless micro connectors
- Advanced low-loss lens technology for penetration with less artifacts
- · Breakthrough broadband frequency response
- Advanced micro-electronics in linear, curved, tightly curved, sector, and hybrid volume array configurations
- · High-precision automated volume transducers

Curved array

C6-2 broadband curved array

- · 6 to 2 MHz extended operating frequency range
- End-fire sector, 50 mm radius of curvature, 72° field of view (wide scan enabled)
- · High density curved array with 128 elements
- Steerable pulsed, High-PRF, and color Doppler; and Color Power Angio (CPA), directional CPA, SonoCT, variable XRES, and mulitvariate harmonic imaging
- General purpose abdominal (adult and pediatric, including vascular), bowel, obstetrical, gynecological, prostate, and interventional applications
- Intervention application
- · Supports biopsy gu ide capabilities

C8-5 broadband curved array


- · 8 to 5 MHz extended operating frequency range
- End-fire sector, 14 mm radius of curvature, 122° field of view (wide scan enabled)
- Steerable pulsed wave and color Doppler, Color Power Angio (CPA), directional CPA, SonoCT, and XRES imaging
- Vascular, pediatric abdominal, and neonatal cephalic imaging
- · Supports biopsy guide capabilities

C9-4v broadband curved array

- 9 to 4 MHz extended operating frequency range
- End-fire sector, 10 mm radius of curvature, 181° field of view (wide scan enabled)
- Steerable pulsed wave and color Doppler, Color Power Angio (CPA), directional CPA, SonoCT, XRES, and harmonic imaging
- · Endocavitary applications, including urology
- · Supports biopsy guide capabilities

Transducers with compact connectors

Ergonomic designs with lightweight super-flexible cables.

Full range for general imaging applications.

Designed for women's healthcare applications.

Volume array

3D9-3v broadband curved array

- 9 to 3 MHz extended operating frequency range
- 164° field of view (wide scan enabled)
- · Support of high resolution 2D imaging
- Support of high resolution, quantitative, single sweep 3D volume acquisitions (hybrid and freehand)
- · Support of 4D imaging up to 11 volumes per second
- Steerable pulsed wave and color Doppler, Color Power Angio, Directional CPA, SonoCT, XRES, and harmonic imaging
- · Endovaginal obstetrical and GYN applications
- · Supports biopsy guide capabilities

V6-2 broadband curved array

- · 6 to 2 MHz extended operating frequency range
- Steerable pulsed wave and color Doppler; Color Power Angio (CPA), Directional CPA, SonoCT, variable XRES, harmonic imaging, and STIC
- End-fire sector, 55 mm radius of curvature, 89° field of view (wide scan enabled)
- · Support of high resolution 2D imaging
- Support of high resolution, quantitative, single sweep 3D volume acquisition
- Support of 4D imaging up to 30 volumes per second
- Comprehensive obstetrical volume applications and general purpose abdominal volume application
- · Supports biopsy guide capabilities

Linear array

L12-4 broadband linear array

- 12 to 4 MHz extended operating frequency range
- Fine angle steering of color and pulsed wave Doppler
- Steerable pulsed wave and color Doppler, Color Power Angio (CPA), SonoCT, panoramic, variable XRES, and harmonic imaging
- Vascular (carotid, arterial, and venous), intervention, bowel, MSK and small parts, and superficial imaging applications
- Cerebrovascular (carotids, vertebrals), peripheral vascular (venous, arterial), internal mammary vessels, and musculoskeletal imaging
- Surgical application
- · Supports biopsy guide capabilities

L12-5 50 broadband linear array

- 12 to 5 MHz extended operating frequency range
- · Fine pitch, 256 element, high resolution linear array
- Steerable pulsed wave and color Doppler, Color Power Angio (CPA), SonoCT, variable XRES, and harmonic imaging
- High resolution superficial applications including small parts, breast, vascular, musculoskeletal, and bowel imaging
- Tissue aberration correction selection for advanced MSK and breast imaging TSP
- · Elastography strain-based
- · Panoramic imaging
- Pediatric application
- · High frame rates available
- Precision biopsy support compatible with Civco Verza guidance system¹

Sector array

S4-2 broadband sector array

- 4 to 2 MHz extended operating frequency range
- · Phased array, 80 elesments
- 2D, CW, steerable pulsed wave, High-PRF and color Doppler, tissue Doppler, variable XRES, AutoSCAN/iSCAN, and harmonic imaging
- $\boldsymbol{\cdot}$ Adult echo, abdominal, pediatric echo, and TCD applications

S8-3 sector array

- · 8 to 3 MHz extended operating frequency range
- · Phased array, 96 elements
- 2D, steerable PW Doppler, CW Doppler, High-PRF Doppler, color Doppler, tissue Doppler, advanced variable XRES, and harmonic imaging
- Adult, fetal, and pediatric echo cardiac applications, pediatric abdomen, neonatal head application

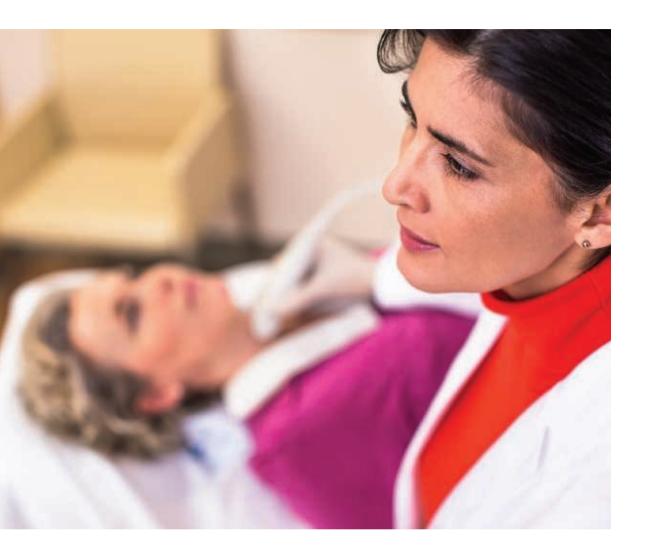
Non-imaging

D2cwc CW transducer (Pedoff)

- · Dedicated 2 MHz continuous wave Doppler
- · Adult cardiology applications

¹ Civco Verza Guidance System is a trademark of Civco Medical Solutions.

5.2 Transducer application guide



Transducer		C6-2	C8-5	C9-4v	3D9-3v	V6-2
Type of array		Curved	Tightly curved	Tightly curved	Tightly curved	Curved
Number of element	S	128	128	128	128	192
Scanplane aperture		63.7 mm	22.4 mm	26.2 mm	26.1 mm	63.4 mm
Field of view		72°	122°	181°	130°	
Volume field of view	v				156° x 85°	100° x 85°
Broadband frequer		6-2 MHz	8-5 MHz	9-4 MHz	9-3 MHz	6-2 MHz
Application	Exam type			-		
Abdominal	General	•				
Abdominat	Renal	•				
	Bowel	•				
	Vascular	•				
	Penetration	•				
	Resolution					
	Intervention	•				
Obstetrics	Early OB	•		•	•	•
Obstetrics	General OB	•		•	•	•
		•		•		•
	NT Penetration	•				•
Fotal		•				
Fetal	Early fetal heart	•		•	•	•
Cumpaglagu	Fetal heart	•		•		•
Gynecology	Pelvis				•	
	Fertility	•		•		
Countralian	Penetration			•	•	
Cardiology	Adult					
	Pediatric					
	Epicardial					
V l	Epiaortic		_			
Vascular	Carotid		•			
	Arterial		•			
	Venous		•			
	TCD					
	Intraoperative					
	Intervention					
	Superficial					
Pediatric	Abdomen	•	•			
	Hip					
	Neonatal cephalic		•			
Small parts	Superficial					
	General					
	Thyroid					
	Testicle					
	Breast					
Musculoskeletal	Superficial					
	General					
Urology	Prostate	•				
	Bladder			•	•	
	Renal					
Biopsy guide		•	•	•	•	•

Transducer		L12-4	L12-5 50	S4-2	S8-3	D2cwc
Type of array		Linear	Linear	Sector	Sector	
Number of elements		128	256	80	96	
Scanplane aperture		34 mm	50 mm	20.3 mm	15.4 mm	
Field of view				90°	90°	
Volume field of view	V					
Broadband frequen		12-4 MHz	12-5 MHz	4-2 MHz	8-3 MHz	
Application	Exam type					
Abdominal	General					
Abdominat	Renal					
	Bowel	•	•			
	Vascular	•	-	•		
	Penetration			•		
	Resolution					
Obstetrics	Intervention					
Obstetrics	Early OB	•	_			
	General OB	•	•			
	NT					
maral .	Penetration					
Fetal	Early fetal heart					
	Fetal heart				•	
Gynecology	Pelvis					
	Fertility					
	Penetration					
Cardiology	Adult			•	•	•
	Pediatric			•	•	
	Epicardial					
	Epiaortic					
Vascular	Carotid	•	•			
	Arterial	•	•			
	Venous	•	•			
	TCD			•		
	Intraoperative					
	Intervention	•				
	Superficial	•	•			
Pediatric	Abdomen	•	•		•	
	Hip	•	•			
	Neonatal cephalic	•			•	
Small parts	Superficial	•	•			
	General	•				
	Thyroid		•			
	Testicle		•			
	Breast	•	•			
Musculoskeletal	Superficial		•			
	General	•	•			
Urology	Prostate					
= -	Bladder					
	Renal					
Biopsy guide		•	•	•		

6. Measurements and analysis

6.1 Measurement tools and general description

- · 2D distance
- 2D circumference/area by ellipse, continuous trace, trace by points
- · Auto conversion of distance to ellipse
- 2D curved-linear distance
- 2D angle: intersection of two lines
- In 2D, three distance or distance and ellipse tools to calculate volume
- In 2D, hip angle tool and d:D ratio tool
- In 2D, percent area reduction and percent diameter reduction tools
- In 2D, Simpson tool calculate LV (left ventricle) area and volume
- In 2D, area-length tool used to calculate LA (left atrium) area and volume
- In 2D, biplane volume calculation

- In 2D, comparison tool available in elastography applications
- PISA calculation available in cardiac applications
- 3D: ellipse and distance on 2 MPR views
- · 3D: stacked contours on one MPR
- M-mode distance (depth, time, slope)
- · M-mode heart rate calculation
- Manual Doppler distance
- · Auto conversion of distance to ellipse
- 2D trace by points
- 2D distance (micro calipers)
- 2D Simpson's
- Generic angle
- · 3 distance volume
- \cdot Distance and ellipse volume

- · Diameter percent reduction
- · Area percent reduction
- Hip angle
- · d:D ratio
- Size compare
- · Doppler peak velocity
- · Doppler two calipers tool
- · Doppler continue trace
- · Doppler trace by points
- · Cardiac dP/dt
- · Volume flow
- · Color aliasing velocity
- · Manual data entry
- · RA pressure
- · 3D stacked ellipses
- · 3D auto stacked contours
- Manual Doppler trace
 - Cardiac trace tool generates Vmean, Vmax, MeanPG, MaxPG, VTI
 - General imaging trace tool generates PSV (peak systolic velocity), EDV (end diastolic velocity), MDV (minimum diastolic velocity), TAPV (time averaged peak velocity), TAMV (time averaged mean velocity), RI (resistive index), PI (pulsatility index), S/D (systole/diastole) ratio, and heart rate
- Time/slope measurements in Doppler and M-mode
- · High Q automatic Doppler analysis (general imaging only)
 - Automatically calculates PSV, EDV, MDV, TAPV, TAMV, RI, PI, S/D ratio, and heart rate
- Functions in live or frozen imaging
- RA (right atrium systolic) Pressure tool
- Stiffness measurement available in elastography applications

6.2 Measurement tools and quantification

QLAB quantification software

- On-cart access
- · Customize capabilities via optional plug-ins

General Imaging 3D Quantification (GI 3DQ) plug-in

- 3D/4D viewer for Ob/Gyn and general imaging including interventional applications
- · Review of 3D/4D, color 3D, and STIC files
- Multiplanar reconstruction (MPR)
- · iSlice and curved iSlice precision volume slicing capability
 - Display of 2D/color slices from static or live volume
 - User-selectable slice display: 4, 9, 16 or 25
 - User-selectable interval spacing
- User-selectable slicing depth
- User-selectable slicing source (x, y or z)

- · Free rotation of any source
- Full cineloop review control
- · 2D grayscale display adjustments
- · Color display adjustments
- · Zoom control
- · Cine/pan slice control through volume
- · User-selectable image storage
- · Quick launch to measurements
 - Auto ruler display
- · Compatible with freehand and automated volumes
- 2D and 3D measurement tool including distance, area, angle, auto volume, stacked and auto contour, and ellipsoid measurements
- Invert mode
- Vascularization index, flow index, and vascularization flow index results on 3D color mode data sets
- Pixel intensity index
- Orientation labels display on Affiniti 30 data sets saved with orientation label marker
- XRES speckle noise reduction of MPR and volume displays
- Assisted auto-trace volume measurement tools for stacked contours and ellipse methods
- Edge detection selection for hypoechoic or high contrast targets
- · Auto volume tool

Intima Media Thickness (IMT) Quantification plug-in

- Automated assessment of the IMT on user-selected frames
- For carotid and other superficial arteries

Elastography Quantification (EQ)

- Available in both single screen and side-by-side display modes
- Ability to generate up to 10 user-defined regions of interest (ROIs)
- $\bullet \ \ \text{Thumbnail display of frames}$
- Measurement results
- Strain rate
- Total strain
- Size comparison between two ROIs
- · Strain ratio
- · Calculation of maximum strain ratio
- · Calculation of average strain ratio
- Calculation of ratio between two user-defined ROIs
- Graphical display
- · Strain ratio parametric image
- Color-coded display of strain ratios with parametric imaging

6.3 High Q automatic Doppler analysis

- · Automatic real-time and retrospective tracing of:
- Immediate peak velocity
- Immediate intensity-weighted mean velocity
- Automatic real-time display of (user-selectable up to six):
- Volume flow
- Time-averaged peak velocity
- Time-averaged mean velocity
- Resistive index
- Pulsatility index
- Systolic/diastolic ratio
- Acceleration/deceleration times
- Illustrated High Q

6.4 Clinical option analysis packages

- · Cardiac analysis
- Left atrium
- Right atrium
- Right ventricle
- Left ventricle
- TAVI (transcatheter aortic valve implantation)
- Valve stenosis
- Prosthetic aortic valve
- Prosthetic mitral valve
- TAPSE (tricuspid annular plane systolic excursion)
- MAPSE (mitral annular plane systolic excursion)
- PCWP (pulmonary capillary wedge pressure or pulmonary artery occlusion pressure)
- Stress echo measurements in various stages
- MPI (or TEI index)
- Volume by area/length method
- M-mode ejection fraction (via Teichholz or cubed method)
- Novel 3-point adjustable Simpson's template
- Simpson's biplane and single plane volume and ejection fraction
- Area, length, volume, and ejection fraction
- LV mass
- 2D all points
- M-mode all points
- Peak velocity
- Maximum and mean pressure gradients
- Pressure half time
- E/A ratio
- D/E slope
- Continuity equation
- Diastolic function
- Cardiac output
- Acceleration time
- Heart rate

- · Vascular analysis
- Right and left carotid artery protocols
- ICA/CCA ratio
- Bilateral lower extremity arterial and venous labels
- Bilateral upper extremity arterial and venous labels
- Percent diameter and area reduction
- Vascular graft measurement package
- User comments
- High Q automatic Doppler analysis
- OB analysis
 - Fetal echo application
- Fetal biometry (up to quintuplets)
- Biophysical profile
- Amniotic fluid index
- Early gestation
- Fetal long bones
- Fetal cranium
- Other OB measurements
 - 2D echo
 - Fetal heart M-mode
 - Fetal Doppler
 - Fetal echo
- · aBiometry Assist^{A.I.}
- · Gynecology/fertility
 - Uterine volume
 - Right and left ovary volumes
 - Right and left follicles (10)
 - Endometrial thickness
 - Cervical length
- Abdominal vascular
 - Labels for all major abdominal arteries and veins
 - Left and right segmentation for kidneys
- General imaging
 - General
 - User-defined labels
- Prostate
- Prostate gland
- Pediatric
 - General
- d:D ratio
- Small parts
 - General
 - Breast with right and left protocols for up to five lesions per breast
 - Testicle
 - Testicle volume
 - EPI head, body, tail
- Urology
- Prostate, PSA, PSA density

7. Physical specifications

System dimensions

Width	57.2 cm/22.5 in
Height	142.2-162.6 cm/56-64 in
Depth	98.3 cm/38.7 in
Weight	83.6 kg/184.4 lb without peripheral devices

System cart

- State-of-the-art ergonomic design for comfort and convenience
- · Easy maneuverability and mobility
 - Wheel-lock and monitor adjustments that facilitate bedside exams
- Independent height adjustment of control panel and display monitor
- Easily accessed transducer connector ports, USB, and DVD media drive
- Transducer and gel bottle holders

- Unique easy clip cable management solution that keeps cables tangle-free and reduces damage while decreasing cable strain to enhance comfort while scanning
- Mobility through high quality, shock-absorbing casters with foot pedal controls for:
- 4-wheel swivel
- 2-wheel swivel lock
- 2-wheel brakes
- Integrated footrests
- Digitally enhanced two-speaker high-fidelity stereo output with rear-mounted subwoofer
- On-board storage tray behind control panel touchscreen and in rear bay storage drawer
- On-board printer bay that provides easy and ergonomic access to your printing device
- Universal peripheral bay that provides easy access for on-board hardcopy or documentation devices
- Built-in A/C line conditioner that provides isolation from voltage fluctuations and electrical noise interference
- · Two high-capacity fans with decreased audible noise

Monitor

- · Flat panel LCD display monitor
 - 54.6 cm (21.5 in) wide-format high-definition flat panel TFT/IPS display
- High contrast ratio >1000:1
- Extended viewing angle >178° (horizontal and vertical)
- Response time: <14 ms
- Virtually flicker-free technology
- Mounted on fully articulating extension arm
- Two-way articulation

Control panel

- Articulation facilitates nearly infinite positioning adjustments for optimum scanning ergonomics: height, swivel, and tilt
 - Up and down 20.3 cm/8 in
 - Rotates 180° from center
 - Palm rest

Physio

- · One 3-lead ECG input
- Gain, sweep rate, and display position controls
- Automatic heart rate calculation and display
- Fault condition display
- Cineloop locator displayed on one ECG input from an ECG source like stress ECG or ECG monitor

Peripherals

- The system supports up to two on-board peripheral devices (excluding report printers)
 - Small format digital B/W printer (USB)
- · Support for large-format external B/W or color printer
- Support for various Hewlett-Packard, Epson, and Xerox brand color and monochrome report printers (USB, externally mounted)

Input/output ports

- Export of measurement and analysis data to off-line reporting software packages (USB) and RS-232
- Display port video export available for either full-screen resolution of 1920x1080 (1080p), display area 1024x768 VGA, or S-Video in NTSC or PAL format

Power requirements and video parameters

- 100V-240 V, 50 Hz/60 Hz PAL/NTSC
- · Power consumption: up to 450 watts

Electrical safety standards

- · Electromechanical Safety Standards met
 - CAN/CSA 22.2 No. 60601-1, Medical Electrical Equipment: General requirements for basic safety and essential performance
 - IEC 60601-1, Medical Electrical Equipment: General requirements for basic safety and essential performance
- IEC 60601-1-2, Collateral Standard, Electromagnetic compatibility – requirements and tests
- IEC 60601-2-37, Particular Requirements for the basic safety and essential performance of ultrasonic medical diagnostic and monitoring equipment
- ANSI/AAMI ES60601-1, Medical Electrical Equipment: General requirements for basic safety and essential performance
- Electromechanical Safety Standards met (EU Only)
- EN60601-2-37, Particular requirements for the basic safety and essential performance of ultrasonic medical diagnostic and monitoring equipment
- Agency approvals
- Canadian Standards Association (CSA)
- CE Mark in accordance with the European Medical Device Directive issued by British Standards Institute (BSI)

8. Maintenance and services

The value of a Philips ultrasound system extends far beyond technology. With every Affiniti 30 system you get access to our award- winning service organization, competitive financing, and educational programs that help you get the most out of your system.*

Maintenance

- Flexible RightFit service agreements to maximize uptime, access Philips award-winning service organization, and minimize risk
- Xtend Coverage offers flexibility to add additional coverage at time of purchase to easily see total cost of ownership
- · Centralized technical and clinical support
- · On-site support
- · Modular design for rapid repairs
- Easy customer access to trackball and air filter for cleaning
- · On-cart software maintenance tools
 - Optimization
 - Maintenance
 - Repair
- Configuration management
- · Comprehensive diagnostics
- Hardware
- Software
- Network
- On-cart transducer test provides confidence in your transducer quality
- First responder access to diagnostics and utilities

Services

Clinical education

- Webinars
- Symposiums
- · On-site
- · Class room
- · Remote

Philips Remote Connectivity

Philips Remote Services connectivity allows for many advanced service features, including

- Virtual on-site visits for both clinical and technical support, providing fast resolution to issues and questions
- · Remote clinical education
- Remote log file transfer decreases downtime by allowing rapid diagnosis of problems by Call Center personnel
- Online Support Request
 - Simplifies support engagement
 - Provides fast response to clinical questions and technical issues
 - User can enter request directly on ultrasound system
- · Proactive Monitoring
- Helps prevent unscheduled downtime
- Monitors key system parameters (voltage, temp, fan speeds, error conditions)
- Sends an alert to Philips Call Center so action can be taken before system operation is affected
- Security is managed through iSSL and encryption.
 Patient data is de-identified to protect confidentiality

Optional Utilization Reports provide data to help manage ultrasound assets

- Track system and transducer usage
- $\boldsymbol{\cdot}$ Summarize data about exam types and duration
- · Provide data to help with credentialing and privileging
- · Identify referrals by exam type

Warranty

· Philips standard product warranty

© 2017 Koninklijke Philips N.V. All rights are reserved. Philips reserves the right to make changes in specifications and/or to discontinue any product at any time without notice or obligation and will not be liable for any consequences resulting from the use of this publication. Trademarks are the property of Koninklijke Philips N.V. or their respective owners.

www.philips.com/affiniti

Printed in The Netherlands. 4522 991 31631 * NOV 2017

^{*} Optional. Not all services available in all geographies; contact your Philips representative for more information. May require service contract.